CHAPTER 1

Introduction

1.1 SCALING AND DIMENSIONAL ANALYSIS

The phenomena with which we shall be concerned all exhibit scaling. In

its simplest form, this just means that two measurable quantities depend

upon each other in a power-law fashion. A familiar example is Kepler’s

law, relating the radius R of a planet’s circular orbit to the period T of

the orbit:

T « R*2. (1.1)

Another example, possibly not so familiar, is the formula for the phase

speed ¢ of waves on shallow water of depth A, neglecting surface tension
and viscous effects:

c? = gh, (1.2)

where g is the acceleration due to gravity. The scaling law in this example

is ¢ « v h. Formula (1.2) is only valid when the depth is small compared
with the wavelength ), and the more general relation is’

2_ 92 2xh
c —2’rta.nh( 5y ), (1.3)

1 See virtually any text-book on fluid dynamics. A clear presentation is given by
D.J. Acheson, Elementary Fluid Dynamics (Clarendon, Oxford, 1990), Chapter 3.
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which indeed reduces to eqn. (1.2) when k < A. In this case, then, scaling
occurs only approximately, but becomes more and more accurate in the
limit /X — 0.

Often, scaling laws can easily be deduced from dimensional analy-
sis. For example, in the water wave case, the only variables that ¢ may
depend upon in principle are g, h, A and the fluid density p. Using the
notation [ ] to denote the dimensions of a given quantity, and the system
of units mass-length-time M LT, we have: [g] = LT~%, [h] = [\] = L and
[0l = M L3 in three spatial dimensions. Thus

c = (gh)/*f (-;f) , (1.4)

where f is a function that cannot be determined by dimensional analysis.
In the limit A/ — 0,

¢~ (gh)/£(0) x v, (1.5)

recovering the scaling law, apparently without requiring any detailed
knowledge about fluid dynamics!

Actually, this happy state of affairs is an illusion ~ we made a very
strong assumption in going from eqn. (1.4) to eqn. (1.5), namely that the
limit process was reqular. Usually, this can only be justified properly by
considerations other than dimensional analysis. This point is by no means
obscure mathematical pedantry: in fact, the cases where the reqularity
assumption breaks down constitute the central topic of this book.

The derivation presented above of the shallow water wave speed is
somewhat deceptive for another, more mundane and less far-reaching rea-
son: in writing down eqn. (1.4), we were presented with a choice of which
length to use in the prefactor of the function f. We could equally well
have used A instead of h, leading to

e= @077 (%) (1)

where f is another function to be determined. Now what happens in the
limit /XA — 07 It looks as if something has gone wrong! To proceed, recall
that our purpose in taking the limit is to remove the dependence of ¢ on
A: our common sense intuition tells us that when A is “sufficiently large’
it should not affect the result. The only way that A can cancel out of the
formula (1.6) is if the function f has a square root behaviour for small
values of its argument:

f@)~zf(z) asz—0, (1.7)
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where the function f is analytic as ¢ — 0 and tends towards some well-
defined limit f(0). In fact, f here is the function of eqn. (1.4), as we see
by using the approximation (1.7) in eqn. (1.6); we do indeed obtain the
correct result (1.5) for the wave speed.

1.2 POWER LAWS IN STATISTICAL PHYSICS

In the above examples, and in many other scaling laws, the power
law, or the exponent is a rational fraction, often deduced from simple
dimensional considerations. This partly accounts for the fact that the
phenomena described are so well understood, and are taught in elementary
physics courses. However, there is a broader class of phenomena where
power-law behaviour occurs, but the exponent is not a simple fraction (as
far as is known). This class of phenomena includes, but is by no means
restricted to, phase transitions where there is a critical point. We shall
shortly discuss precisely what we mean by this; but first, let us consider
some examples.

1.2.1 Liquid Gas Critical Point

In figure (1.1) is sketched a portion of the phase diagram for a fluid.
The axes are the temperature 7' and the density of the fluid p, and the
curve is shown in the fixed pressure, P, plane. Below the critical or tran-
sition temperature, T, is the coexistence curve. This has the following
interpretation. Below T, as density is increased at fixed temperature, it
is not possible to pass from a gaseous phase to a liquid phase without
passing through a regime where the container of the fluid contains a mix-
ture of both gas and liquid. The two-phase region has a manifestation in
the thermodynamic properties of the fluid, which we will discuss later.
Above the critical point, it is possible to pass continuously from a gas to
a liquid as the density is increased at constant temperature. In this case,
there is no density at which there is a coexisting mixture of liquid and gas
in the container. Note that even starting below T, it is always possible
to pass from a liquid to a gas without passing through any two-phase
region: one simply raises the temperature above 7., reduces the density,
and then lowers the temperature below T,. This suggests that there is no
real way to distinguish between a liquid and a gas. In fact, the question
of how one identifies different phases of matter is one with which we shall
be concerned in later chapters.

Returning to figure (1.1), the interesting question to ask for the pur-
poses of the present discussion is: what is the shape of the coexistence
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Figure 1.1 Phase diagram of a fluid at fixed pressure.

curve near the critical point? Experimentally, for sulphurhexafluoride, it
is found that?

oy — p| & |T — T,|0327+0.006 (1.8)

is the shape of the curve near the critical point, where p4. (T') are the values
of the density at coexistence on the two branches of the coexistence curve
below T, as shown in figure (1.1). The number 0.327 £ 0.006 is an ex-
ample of a critical exponent, and does not depend upon the particular
fluid system studied. Although you might reasonably have expected that
this exponent would be different for the coexistence curve of a different
substance, this is not in fact the case! For example, the same measure-
ment on 3He yields a value for the critical exponent?® of 0.321 + 0.006.
In both of the results quoted, the error bars correspond to two standard
deviations? The critical exponent is not obviously a simple rational frac-
tion, and is clearly different from the value 1/2, which, as we will see
later, might have been expected from dimensional analysis. In fact, it was
the overwhelming experimental evidence that this exponent was different
from 1/2 that forced some physicists in the 1930’s to realise that there
was a deep problem lurking in seemingly unimportant exponents.

2 The data for the liquid gas critical point of sulphurhexafluoride are taken from
M. Ley-Koo and M.S. Green, Phys. Rev. A 16, 2483 (1977).

3 The 3He data are from C. Pittman, T. Doiron and H. Meyer, Phys. Rev. B 20, 3678
(1979).

4 A useful summary of the experimental situation is given by J.V. Sengers in Phase
Transitions, Proceedings of the Cargese Summer School 1980 (Plenum, New York,
1982), p. 95.
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1.2.2 Magnetic Critical Point

A second example is the critical point of a ferromagnet. A magnet
may be regarded as consisting of a set of magnetic dipoles residing on the
vertices of a crystal lattice. We will often refer to the magnetic dipoles as
spins. The spins are able to exchange energy through interactions between
themselves, as well as between themselves and other degrees of freedom
of the crystal lattice (e.g. via spin-orbit coupling). For systems in equilib-
rium, one can define a temperature T'. If one waits a sufficiently long time,
equilibrium is established between the lattice and the spins, and both sets
of degrees of freedom are described by a single temperature T'. On the
other hand, the spins can come into equilibrium between themselves well
before they come into equilibrium with the lattice: in this case, the spin
degrees of freedom and the lattice degrees of freedom may have different
temperatures. Here, we ignore such dynamical questions, and assume that
we are dealing with a system described by a single temperature T.

At high temperatures and zero external field, the system is in the
paramagnetic phase: following the time evolution of any spin would
reveal that it points in all directions with equal frequency. Thus, no di-
rection is singled out at any given time when considering all of the spins
in the system and the net magnetic moment is zero.

Below a critical temperature, 7., however, the spins tend to align
along a particular direction in space, even in the absence of an external
field. In this case, there is a net magnetisation, M(T), and the system
is in the ferromagnetic phase. The onset of this behaviour is a con-
tinuous phase transition: the magnetisation rises continuously from
zero as the temperature is reduced below T, as sketched in figure (1.2).
The magnetisation is zero above the transition and is non-zero below the
transition temperature. A quantity which varies in this way is referred to
as an order parameter.

The question naturally arises as to why the system should order along
any particular direction: what is special about the direction? This question
is far from being naive, and we shall discuss it in detail later.

In certain systems, the actual dipole interactions between the atoms
on the lattice restrict the spins to point parallel or anti-parallel to one
particular direction, which we shall take to be the z-axis. In these sys-
tems, known as Ising ferromagnets , each spin cannot rotate through
all possible orientations, but instead can only point along the 42z or —z
directions. The Ising ferromagnet is therefore relatively simple to study,
and we will devote considerable attention to it in these notes. The sim-
plicity is deceptive, however. What may be simple to state may not be
simple to solve!
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Figure 1.2 Onset of magnetisation in an Ising ferromagnet.

The interaction energy between neighbouring spins in an Ising ferro-
magnet is lowest when neighbouring spins point in the same direction.
However, there is another class of systems, known as Ising antiferro-
magnets, in which the sign of the interaction energy between neighbour-
ing spins is such that the energy is lowered when neighbouring spins point
in opposite directions. We will later see that the thermodynamics of an-
tiferromagnets with certain crystal lattices in zero applied magnetic field
is identical to the thermodynamics of ferromagnets.

The onset of magnetisation in the three dimensional Ising antiferro-
magnet DyAlQg3, in the limit of zero applied magnetic field, exhibits the
following behavior experimentally:®

M x (Tc - T)0.3llﬂ:0.005 ‘ (1.9)

This result is valid in the limiting case as T' — T, from below, and is ex-
pected to apply to Ising ferromagnets too. As the temperature is reduced
below the critical temperature, significant deviations from this result de-
velop. The critical exponent is again not obviously a rational fraction,
and furthermore seems to be the same as that for the liquid-gas system,
within the experimental precision.

5 The experimental results for the critical point of an antiferromagnet were taken
from L.M. Holmes, L.G. Van Uitert and G.W. Hull, Sol. State Commun. 9, 1373 (1971).
For an exhaustive summary comparing experimental results with predictions based on
idealised models of magnetic systems, see L.J. de Jongh and A.R. Miedema, Adv.
Phys. 28, 1 (1974).
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Figure 1.3 (a) Phase diagram of *He; (b) Heat capacity as a function of temperature
at the A-transition, for fixed pressure.

1.2.3 Superfluid (\) Transition in 4He

Part of the phase diagram for ‘He is sketched in figure (1.3a). For
a range of pressures from near zero to about 25 atmospheres, liquid he-
lium undergoes a continuous transition to a superfluid at a temperature
of about 2 K. In the superfluid state, *He exhibits a number of unusual
properties, including dissipationless flow through fine capillary tubes. The
transition to the superfluid state is sometimes known as the A-transition,
due to the shape of the heat capacity curve, C, as a function of tempera-
ture, shown in figure (1.3b). The transition temperature is usually known
as Ty, and its precise value depends upon the pressure.

The best fit to the heat capacity data near the transition® is found to

be
C o [Ty — T|0013%0.0%, (1.10)

This is an experiment where great precision is possible for a variety of
technical reasons, and there is little doubt that the critical exponent has
the sign given. This means that the heat capacity curve is actually a
cusp, although for many years it was thought that the heat capacity
actually exhibited a divergence at the A-transition. Indeed, to a good

6 High resolution experiments on the A-tramsition are described in J.A. Lipa and
T.C.P. Chiu Phys. Rev. Lett. 51, 2291 (1983).
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approximation, the behaviour of the heat capacity is logarithmic, and
in many books and articles the A-transition is often described by the

formulae
C o~ Alog(T -T)\)+ B, T > T,
Alog(Th-T)+ B, T<T
with A, A’, B and B’ being temperature independent constants. Expres-

sions (1.10) and (1.11) resemble one another when plotted on graph paper
over a limited temperature range, as can be seen using the identity

(1.11)

" =exp(nlogz) =~ 1+nlogz (1.12)

where the approximation is valid if = is not too small and = € 1. In
the high accuracy experiments leading to the result quoted in equation
(1.10), |T' — T»|/T» ranges from 10~3 to 10~%, and deviations from the
logarithmic approximation are discernible. ‘

1.2.4 Self-Avoiding Random Walk

Consider the root mean square distance, R, travelled by a random
walker after N steps. By root mean square, we imply that an average has
been taken over the probability distribution of the walks. Suppose that
we now require that the probability distribution does not permit the walk
to intersect itself, but otherwise the walks are random. This is sometimes
taken to be a minimal model of a polymer chain in solution, because two
molecules making up the polymer cannot occupy the same point in space.
Such a walk is called a self-avoiding walk. In this case, it is found that
in three dimensions the simple scaling law for a random walker is cha.n ged
from R « v/N, and becomes

R x NO.586:£0.004 (1‘13)

as N — oo. The claim is that this formula applies to both a real iso-
lated polymer in solution and a mathematical self-avoiding walk. If this
is true, then the molecular structure of the polymer and the various en-
ergies of interaction between monomers (repeat units) of the polymer do
not seem to influence the scaling behaviour. The exponent quoted in equa-
tion (1.13) was obtained from experiment on a dilute polymer solution?

7 The experimental determination of the scaling of R for polymers is reported in
J.P. Cotton, J. Physique Lett. (Paris) 41, 1231 (1980). The RG calculations for the
same quantity were performed by J.C. Le Guillou and J. Zinn-Justin, J. Physique Lett.
(Paris) 50, 1365 (1989).
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Figure 1.4 Viscosity of a binary fluid near the critical point

Renormalisation group (RG) calculations give a value for the expo-
nent of 0.5880 + 0.0015, where the uncertainties derive from the mathe-
matical technique used to resum the asymptotic series given by the RG.
Indeed, it does seem that the formula is completely independent of the
chemistry, and only depends upon the ‘spaghetti’ nature of the polymer.

1.2.5 Dynamic Critical Phenomena

The examples given above have all exhibited non-trivial power laws
in quantities that are unrelated to the time evolution of the physical sys-
tem in question. For example, magnetisation is a thermodynamic quan-
tity, computed and (in principle) measured in equilibrium. However, non-
trivial power laws may also be exhibited by transport coefficients in a
system near a critical point. A transport coefficient is a phenomenological
parameter relating a current to a driving force. For example, Ohm’s Law,

J=0oE, (1.14)

relates the electric current density j to the electric field E which drives the
current, through the conductivity tensor o. Other examples of transport
coefficients include diffusion coefficients and viscosity.

Very close to the critical point of a binary fluid mixture, the shear vis-
cosity, 7,, is found to diverge weakly with temperature, as sketched in fig-
ure (1.4). For example, the shear viscosity of nitroethane-3-methylpentane
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is found to behave above T, as®

T — T\ ~003£001
c

This behaviour occurs over a range of temperatures 10~° < (T'-T.)/T. <
102 where equilibrium thermodynamic quantities also exhibit scaling.
Although viscosity is usually thought of as being a property of a flow-
ing fluid, i.e. one not in equilibrium, it is generally believed that close
to equilibrium, transport properties can be related to purely equilibrium
quantities. This topic is generally known as linear response theory.

1.3 SOME IMPORTANT QUESTIONS

These notes are primarily concerned with phase transitions where
there is no generation of latent heat. In other words, I shall, for the most
part omit discussion of what are called first order phase transitions
in the Ehrenfest classification. Ehrenfest proposed that phase transi-
tions could be classified as ‘nt* order’ if any n** derivative of the free
energy with respect to any of its arguments yields a discontinuity at the
phase transition. The phenomena which we will describe are often called
critical phenomena and occur at second order phase transitions,
although this name is inappropriate, because the Ehrenfest classification
is not correct. I prefer the use of the term continuous phase transition.
Ehrenfest’s classification fails, because at the time that it was formulated,
it was not known that thermodynamic quantities such as the specific heat
actually diverge at continuous transitions, rather than exhibiting a sim-
ple discontinuity, as the Ehrenfest classification implies. We will see in
future chapters that this failure is related to the failure of the applica-
bility of mean field theory, as exemplified by the Weiss theory of
ferromagnetism and the Van der Waals equation for fluids.

Power law behavior at a critical point, as in examples (1) and (2) of the
previous section, is not just restricted to the quantities |py —p_| and M.In
fact, we shall see that many different observable quantities exhibit scaling
behaviour and have associated critical exponents. These quantities can
be placed in two categories. The first set of quantities are thermodynamic

& The divergence of the shear viscosity near the critical point was measured by B.C.
Tsai and D. Mclntyre, J. Chem. Phys. 60, 937 (1974). Further discussion of this topic
may be found in the article by J.V. Sengers mentioned in the footnote on page 4. A
review on the topic of dynamic critical phenomena is given by P.C. Hohenberg and B.I.
Halperin, Rev. Mod. Phys. 49, 435 (1977).
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variables, such as the specific heat. The second set characterise spatial
ordering in a system and address the question: how does, for example,
the local magnetic moment vary from point to point in a ferromagnet?
The examples which we have mentioned above prompt us to consider
many questions, amongst which the most interesting are perhaps:

Question 0: Why do phase transitions occur at all?
In statistical mechanics, thermodynamics arises from the free energy,
F, and its derivatives, given by Gibbs’ formula

e—F/k8T _ my ¢~H/ksT (1.16)

where kg is Boltzmann’s constant and T is the temperature. H is the
Hamiltonian, and Tr denotes a sum over all degrees of freedom mentioned
in H. Since the Hamiltonian will usually be a non-singular function of the
degrees of freedom, the right hand side of equation (1.16) — the partition
function — is nothing more than a sum of terms, each of which is the
exponential of an analytic function of the parameters in the Hamiltonian.
How, then, can such a sum give rise to non-analytic behaviour, of the sort
described in the previous section? Is it even clear a priori that a single
partition function can describe multiple phases?

Question 1: How can we calculate the phase diagram of a system as we
change the ezternal parameters?

These external parameters, as well as the temperature, enter the free
energy through the Hamiltonian, via equation (1.16). Anticipating the an-
swer to the last question posed in the previous paragraph, it is sometimes
forgotten that apparently different states of matter, such as liquid and
solid, are actually described by the same Hamiltonian. Simply changing
T in equation (1.16) can cause a change of state.

Question 2: How do we compute the exponents which are observed at a
continuous transition?

Even when we have understood, in principle, how it is that non-
analytic or critical behaviour can arise, the challenge remains to account
for the precise values of the critical exponents. Mean field theories, built
from the foundations laid by Van der Waals and Weiss, always lead to
exponents given by rational fractions. However, the observed values do
not seem to agree with these predictions.

The discrepancy between the mean field theory prediction for the
shape of the liquid - gas coexistence curve, eqn. (1.8), which gives an
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exponent of 1/2, and the observed value of about 0.325 is far from in-
significant. Usually in physics, we are satisfied with a qualitative under-
standing of a given phenomenon together with a reasonable estimate of
the quantitative consequences, always with the assurance that a more re-
fined calculation would improve the quantitative predictions. Why then
is the difference between 0.5 and 0.35 of such apparent significance? The
point is that until about twenty-five years ago or so, it was not possible,
even in principle, to account for this discrepancy. The numerical discrep-
ancy of 30% in a critical exponent is but the tip of a well-hidden iceberg.
Classical physics makes an assumption so subtle that it was not even
recognised explicitly for many years. It is no exaggeration to say that in
solving this problem, a new way of looking at physics emerged, which has
infused condensed matter physics and high energy physics. In recognition
of this, K.G. Wilson, the principle architect of the renormalisation group
approach, was awarded the 1982 Nobel Prize in physics. _

We shall shortly see that the critical exponents are often indepen-
dent of the specific system under consideration. For example, the critical
exponent 3 for the liquid-gas critical point

los = p-| « |T = T (1.17)
and the exponent 3 for the ferromagnetic critical point
M« (T.-T)° (1.18)

are the same within the accuracy of the experiments! The fact that two
apparently different physical systems might share precisely the same sets
of critical exponents is known as universality. Thus, we ask

Question 3: Why does universality occur, and what are the factors that
determine which set of phenomena have the same critical exponents?

Phenomena with the same set of critical exponents are said to form
a universality class. The usefulness of the concept of universality class
lies in the fact that, in general, members of a universality class have only
three things in common: the symmetry group of the Hamiltonian (not
the lattice, if one is present), the dimensionality, and whether or not the
forces are short-ranged.

1.4 HISTORICAL DEVELOPMENT

Complete answers to most of the questions above were not known 20
years ago. In these lecture notes, we shall follow approximately the his-
torical development of the subject, although we will start with a precise
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statistical mechanical definition of phase transition, emphasising the im-
portant notion of the thermodynamic limit, in which the system size is
taken to be infinitely large, and indicating how, strictly speaking, phase
transitions arise only in this limit.

Of central importance to the development of the subject were studies
of two physical systems, the liquid-gas system and the ferromagnet, at the
classical level of description. The term ‘classical’ is not used to indicate
an alternative to quantum theory; instead, it signifies that the theory
in question ignores thermal fluctuations, an approximation used in all
but a few exactly solvable cases, until the advent of the renormalisation
group. In fact, we shall see that these classical theories, due to Van der
Waals and Weiss respectively, are actually rather good in many ways,
and already exhibit some (but not all) qualitatively correct features of
phase tramsitions. In our presentation, we will also expose some of the
similarities between these two apparently different phenomena, showing
how the mathematical descriptions of these phenomena become identical
near a critical point.

This observation forms the basis of Landau’s theory of phase
transitions, which is the most succinct encapsulation of the classical
approach. However, we will present Landau theory in a way which an-
ticipates the developments that follow. In fact, we shall see that classical
theories, and thus Landau’s theory, are mean field theories; a physi-
cal variable such as the magnetisation is replaced by its average value,
and fluctuations about that value are ignored. It is possible to use Lan-
dau theory to estimate the importance of fluctuations, and thus to check
on the self-consistency of the theory. However, it is found that near a
critical point, fluctuations are not negligible, and thus the theory is not
self-consistent. Landau theory contains within it the seeds of its own de-
struction! -

The next significant step was the development of the notion of scaling
laws, first arrived at on a phenomenological basis by B. Widom. We will
see that the equation of state of a physical system near to a critical point
obeys what appears to be an analogue of the law of corresponding
states, encountered in the equation of state (such as that due to Van der
Waals) for a fluid. In the latter case, however, the law of corresponding
states is always valid, not just near to a critical point. In the context of
magnetic systems, the equation of state relates the magnetisation, M, the
temperature T, and the external magnetic field, H:

H=f(M1), t= ,-7-7‘,1-, (1.19)
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Ostensibly, f is a function of two variables. Nevertheless, Widom dis-
covered that near a critical point, the equation of state may be written

as
t

- §
H=M’® (W) (1.20)
with ® being a function of just one variable. The exponents é§ and 8 ap-
pear in equation (1.20) in accord with convention, and Widom’s striking
discovery was that 6, § and T, can be chosen so that the experimental
data from different materials (Fe, Ni, ...) all satisfy equation (1.20) with
the same function ®! Furthermore, it was noticed that equation (1.20)
implies a relationship between the critical exponents for different thermo-
dynamic quantities, such as the specific heat, the susceptibility and the
magnetisation.

Where do scaling laws come from? L.P. Kadanoff proposed a simple,
intuitive explanation, namely that a relation of the form of (1.20) follows
if one assumes that near a critical point, the system ‘looks the same on
all length scales’. We shall formulate this notion a bit more precisely later
and see why it is, in fact, not really quite correct. Kadanoff’s argument
is important, because it provides the basic physical insight on which the
technique of the renormalisation group (RG) is built; Kadanoff almost
certainly was aware of the flaws in his argument, but nevertheless had the
intellectual courage to propose it anyway.

The modern era began with a series of seminal papers by K.G. Wil-
son in 1971, in which the renormalisation group was developed and ex-
plained in the contexts of both condensed matter physics and high energy
physics. These and subsequent papers by Wilson initiated an explosion of
activity which continued unabated for a decade. Many of the applications
of the renormalisation group utilised perturbation expansion techniques,
with such small parameters as the variables ¢ = 4 — d, where d is the
dimensionality of space and 1/n, where n is the number of components
of the order parameter (i.e., the magnetisation, which is a vector, has 3
components). Today, some of this body of work has become part of the
mainstream of physics.

At the time of writing, it is probably fair to say that the frontiers of
renormalisation group physics have shifted away from phase transitions
and field theory, towards non-equilibrium phenomena. One active av-
enue of research is the study of dynamical phenomena where there is a
fluctuating noise source present. An example is the growth of an interface
by the random deposition of atoms. Such an interface is rough, and will
exhibit height fluctuations about its average position. The RG and other
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methods, originally developed to treat critical phenomena, have been used
to study how these fluctuations scale in both space and time.

Another line of inquiry is the dynamics of systems approaching an
equilibrium state, but still not close enough to equilibrium that linear
response theory is valid. In these systems, spatial correlations sometimes
exhibit scaling behaviour in time. One well-known example is that of the
phase separation of a binary alloy below the critical point, where the
time dependent X-ray scattering intensity at wavenumber k, S(k,t), is
found to obey a relation of the form

S(k,t) = t* F(kt?) (1.21)

with ¢ close, if not exactly equal, to 1/3, and d being the spatial dimen-
sionality. It is not yet well-understood how to apply the RG to pattern
formation problems of this type.

In another set of problems described by partial differential equations
without noise present, a system may be well-described by a similarity
solution of the form

u(z, t) ~ t° f(xtP), as t — oo, (1.22)

where u is some observable and z and ¢ are space and time respectively. In
some cases, the exponents @ and 3 characterising the similarity solution
may not be simply obtained by dimensional analysis; nevertheless, the
RG can be successfully used to solve these problems too. Examples of
such problems arise in many areas of fluid mechanics, for example, and
this new topic will be introduced in chapter 10.

The condensed matter physics literature contains two versions of the
RG: the Gell-Mann-Low RG and the Wilson RG. In critical phenom-
cna, the use of the former is based upon perturbation theory, whilst the
latter has a direct geometrical interpretation and is in principle, non-
perturbative. Indeed, it was the introduction of Wilson’s method in 1971
which began the modern era of the RG. The connection between the two
versions is by no means obvious. We shall present the Gell-Mann-Low
RG when we explain renormalisation in chapter 10, in the context of phe-
nomena far from equilibrium; there we will also mention the connection
with Wilson’s formulation of RG. We will see that renormalisation has a
direct physical interpretation, and may be easily understood wﬂ:hout the
technical complications of quantum field theory.
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EXERCISES

FEzercise 1-1

Dimensional analysis (DA) is often a powerful tool in physics. This
question requires you to use dimensional arguments to solve a couple of
interesting problems. DA is usually used in two ways: (1) The fundamental
theorem of DA asserts? that in any physical problem involving a number of
dimensionful quantities, the relationship between them can be expressed
by forming all possible independent dimensionless quantities, denoted by
II, I, I , ..., II,,.. Then the solution to the physical problem is of the
form II = f(II; ...1I,,), where f is a function of n variables. (2) Sometimes
there is only one dimensionless combination of variables relevant to a given
problem. Then (1) implies II = constant.

(a) By noting that the area of a right-angled triangle can be expressed
in terms of the hypotenuse and (e.g.) the smaller of the acute angles,
prove Pythagoras’ theorem using dimensional analysis. You will find
it helpful to construct a well-chosen line in the right-angled triangle.
Note: the whole point of dimensional analysis is that you do NOT
need to solve for the functional form of the solution to a given prob-
lem. Thus, in this question, you must pretend that you do not know
trigonometry.

(b) Now consider the case of Riemannian or Lobachevskian geometry (i.e.
the triangle is drawn on a curved surface such as a riding saddle or a
football). What happens in this case?

FEzercise 1-2

In 1947, a sequence of photographs of the first atomic bomb explosion
in New Mexico in 1945 were published in Life magazine. The photographs
show the expansion of the shock wave caused by the blast at successive
times in ms. From the photographs, one can read off the radius of the
shock wave as a function of time: the result is shown in the accompanying
table. Assuming that the motion of the shock is unaffected by the presence
of the ground, and that the motion is determined only by the energy
released in the blast E and the density of the undisturbed air into which
the shock is propagating, p, derive a scaling law for the radius of the
fireball as a function of time. Use the data from the photographs to test
your-scaling law and hence deduce the yield of the blast. You must test

9 First enunciated apparently by E. Buckingham in a delightful paper (see especia.lly
the concluding paragraph), Phys. Rev. 4, 345 (1914). Fourier is usually attributed with
the principle that every term in a physical equation must have the same dimensions.
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Table 1.1 RADIUS R OF BLAST
WAVE AFTER TIME T

T /msec R/m
0.10 111
0.24 19.9
0.38 25.4
0.52 28.8
0.66 31.9
0.80 34.2
0.94 36.3
1.08 38.9
1.22 41.0
1.36 42.8
1.50 44 4
1.65 46.0
1.79 46.9
1.93 48.7
3.26 59.0
3.53 61.1
3.80 62.9
4.07 64.3
4.34 65.6
4.61 67.3
15.0 106.5
25.0 130.0
34.0 145.0
53.0 175.0
62.0 185.0

your scaling law by plotting a graph. You should consider carefully and
then ezplain what is the most useful graph to plot. You should assume
that all numerical factors are of order unity!® Although the photographs
were declassified in 1947, the yield of the explosion was to remain classified
until several years later.

10 For a detailed analysis and discussion of the data, see G.I. Taylor, Proc. Roy. Soc.
A 201, 175 (1950).



