34 Fields of Force.

that is, the parallel straight lines y = 2¢x + C, which become con-
tinually steeper as time goes on. From the equations of the paths, we
see that the fluid is moving like a rigid body, keeping its orientation,
and its points describing congruent parabolas.

Exercises.
1. Study the motions

a) xj”o;‘yogt_i_ ”ogyog-z, y =20 + %0, %o Y0 e 2=z,
b) x = x,+ sint, Yy =9+ (1 — cos?), z=2z,
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determining the nature of the paths, the velocity fields, and the lines of flow.

2. Show by a simple example that, in general, the path of a particle, moving
under a stationary field of force, will not be a line of force.

4. Expansion, or Divergence of a Field.

An important concept in connection with a fluid in motion is its
rate of expansion or contraction. A portion of the fluid occupying a
region T, at time #,, will, at a later time #, occupy a new region 7. For
instance, in the steady flow of the last section, a cylinder bounded at
t = 0 by the planes zp =0, z) =1, and by the surface 7 + 35 = a2,
becomes at the time ¢ the cylinder bounded by the same planes and the
surface

%2 y2
G@er T e =1
as we see by eliminating #,, ¥,, 2, between the equations of the initial
boundary and the equations of the paths (fig. 6). Here the volume of
the region has not changed, for the area of the elliptical base of the
cylinder is wa?, and so, independent of the time.

On the other hand, in the flow
% x=x0+t: y=yoet»
- z,y) i )

0/“"%’/”) the same cylinder at time ¢ =0,
has at the time ¢ the elliptical
boundary

F—=0 ¥ _
Fig. 6. T T (aeh)? L,

so that the volume has increased to ma2¢’. The time rate of expansion
of this volume is the derivative of this value, alsowa2é. If we divide the
rate of expansion of the volume by the volume, and find such a quotient
for a succession of smaller and smaller volumes containing a given point,
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the limit gives us the time rate of expansion per unit of volume at that
point. In the present instance, the quotient is 1, und by decreasing «,
we may make the original volume as small as we please. Hence the time
rate of expansion per unit of volume at the point originally at the origin
is always 1. It is not hard to see that this characterizes the rate of expan-
sion of the fluid at all points, for the chords of any portion of the fluid
parallel to the x- and z-axes are constant, while those parallel to the
y-axis are increasing at the relative rate 1. Thus every cubic centimetre
of the fluid is expanding at the rate of a cubic centimetre per second.

Let us now consider the rate of expansion in a general flow. The
volume at time £ is

V(t):fofdxdydz.

We must relate this expression to the volume at #,. By the equations (2),
every point (x, ¥, 2) of T corresponds to a point (%, ¥y, %) of T. We
may therefore, by means of this transformation, in which ¢ is regarded
as constant, change the variables of integration to %, ¥,, %,. According
to the rules of the Integral Calculus?, this gives

V(t)=fﬂdxdydz:frff](xo,yo,zo, 8 dxgdy,dz,,

where J denotes the Jacobian, or functional determinant

9z 9y = 0z
0xy’ 0xy’ 0x
| 9x ay dz
J (%0, Yo, 20, 1) = 3y’ 973’ 9%,
9z 9y = 9z
of the transformation. 0z" 0z’ 0z
We are interested in the time rate of expansion of the volume. This

is given, if the Jacobian has a continuous derivative with respect to the
time, by
av aJ
W szf—dt— dxodyo dzO .
T,

We can compute the derivative of the Jacobian for ¢ = {, without diffi-
culty, and as 7, can be taken as any instant, the results will be general.

First, 0%x 02y 0%z
0tdxy’ Otdx,’ 0tdx,

4 _g| ox sy o

at dy,’ dy,’ 3%,

ox ay i?_z_

0z’ 92’ 0z,

1 See Oscoop: Advanced Calculus, New York, 1925, Chap. XII, §§4—S8, or
CouRaNT: Differential- und Integralrechnung, Berlin, 1927—29, Vol. II, pp. 261, 264.
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where the symbol S means that we are to add two more determinants
in which the second and third rows of [, instead of the first, have been
differentiated with respect to . Let us assume that all derivatives
appearing are continuous. Then, since x, y, z reduce to x,, ¥,, z,, for
t = 1, at this instant

ox __ 0y _ 0¢ =1 ﬂ—_‘?i_?.l-_a_y_ﬁ_gi_o

0xy  0yy 0z ' 0yy 0zg 0xy 0z, 0%, 0y, =’
#x 9 0x>_8X #y _ oy Pa oz
0tdx, 6x0(0t T 0xy’  3tdy,  0y,’ 0tdz, 0% "

Accordingly
aj 02}
dt :]t=to 0%, + 03’0 020 lt=t,

We may now drop the subscripts, since #, y, z coincide with x,, ¥,, 2,
at ¢ =14y, and #, may be any time. We then have, for the time rate of ex-
pansion of the fluid occupying a region T at time ¢,

® =l G+ e

From this equation we may derive the relative rate of expansion, or
the rate of expansion per unit of volume at a point. We remove the inte-
grand from under the sign of integration, by the law of the mean, and
divide by the volume:

av

dt © T oZ

72 6x + + 9z "
If, now, the region 7' is made to shrink down on the point P (x, y, 2),
the limit of the above expression gives us the relative time rate of expan-
sion of the fluid at P:

0z
dy + a0z’
or the divergence of the vector field ¥V (X, Y, Z), as it is called. The ex-
pression (6) is called the tofal divergence of the field for the region 7.
We see at once that if the rate of change of volume (6) is everywhere

0, the divergence (7) is everywhere 0, and conversely. Thus a fluid whose
divergence vanishes everywhere is incompressible!.

(7) div V_ - —|—

We are now in a position to see how the field lines can give us a pic-
ture of the intensity of the field. Consider all the field lines passing
through a small closed curve. They generate a tubular surface called a
field tube, or, in a field of force, a tube of force. If the flow is stationary,

1 See, however, §9 (p. 45).
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the fluid flows in this tube, never crossing its walls. If, in addition, the
fluid is incompressible, it must speed up wherever the tube is pinched
down, and slow down when the tube broadens out. Interpreting the field
as a field of force, we see that in a stationary field of force whose diver-
gence vanishes everywhere, the force at the points of a line of force is greater
or less according as the neighboring lines of force approach or recede from
it. This qualitative interpretation of the spacing of the lines of force
will be made more exact in § 6.

Exercises.

1. Verify that the field of Exercise 1, page 31, has a divergence which vanishes
everywhere. Draw the lines of force 342y— 44 =C for C=—2, —1,0, 1, 2,
and verify the relationship between intensity and spacing of the field lines.

2. Verify the fact that the total divergence vanishes for the field of force due
to a single particle, for regions not containing the particle, bounded by conical
surfaces with the particle as vertex, and by concentric spheres. Show that for
spheres with the particle at the centers, the total divergence is — 4 7z m, where m
is the mass of the particle.

3. A central field of force is one in which the direction of the force is always
through a fixed point, and in which the magnitude and sense of the force depends
only on the distance from the point. The fixed point is called the center of the
field. Show that the only field of force with Q as center, continuous except at Q,
whose divergence vanishes everywhere except at Q, is the Newtonian field of a
particle at Q. Thus Newton’s law acquires a certain geometrical significance.

4. An axial field of force is one in which the direction of the force is always
through a fixed line, and in which the magnitude and sense of the force depends
only on the distance from this line. The line is called the axis of the field. If such
a field is continuous, and has a vanishing divergence everywhere except on the
axis, find the law of force. Find also the law of force in a field with vanishing
divergence in which the force is always perpendicular to a fixed plane and
has a magnitude and sense depending only on the distance from this plane.

5. Show that the divergence of the sum of two fields (the field obtained by vector
addition of the vectors of the two fields) is the sum of the divergences of the two
fields. Generalize to any finite sums, and to certain limits of sums, including
integrals. Thus show that the divergence of Newtonian fields due to the usual
distributions vanishes at all points of free space.

6. The definition of the divergence as

av
lim Et—
V>0
involves no codrdinate system. Accordingly, the expression (7) should be inde-
pendent of the position of the cotrdinate axes. Verify that it is invariant under
a rigid motion of the axes.

5. The Divergence Theorem.

The rate of expansion of a fluid can be computed in a second way,
and the identity obtained by equating the new and old expressions will
be of great usefulness. Let us think of the fluid occupying the region



