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op are the mean values of o on the two sublattices, one can use (24.70) to calculate
them self-consistently. For example, the mean value of any variable oy is

o\BusH +BJzos} _ {—BusH —BJzo8}
op = <U-' > — . The probability that o, = | times 1 plus the
R4 e{ﬂl‘BH +BJz08} + e{_ﬁ usH—PpJzop} probability it equals —1 times —1.

(24.71)
Thus
op = tanh[ﬁ;LBH + ﬁZO'BJ] (24.72a)
op = tanh[BugH + BzoaJ]. (24.72b)

The chemical potential y is determined by the requirement that atoms A and B
be present in equal proportion, which implies that
If N4 and Np are the numbers of A and B

opa+op= 0. sublattice sites, then ZR o5 =Ng— Ny = (24-73)

ZEA U‘k +Z§B (TE =NAO'A +NBO’B.
One can only achieve Eq. (24.73) if ugH = p—z(epp + €a) /2 = 0, so finally one
has
o4 = — tanh ( BJzo. A) = tanh( ,Bi J l 204 ) . Remember that superlattice ordering only hap- (24.74)
- . pens when J = €45 < 0.

Because Eq. (24.74) is identical to Eq. (24.56), it can be solved by the method
indicated in Figure 24.7.

24.5.2 Spin Glasses

Spin glasses were discovered by Jacobs and Schmitt (1959). They occur when the
interactions between spins have random sign or magnitude. There are typically
huge numbers of nearly degenerate states separated by energy barriers of many
different sizes. Edwards and Anderson (1975) wrote down the analog of the Ising
model for these systems, and it was solved by Parisi (1987).

24.6 Critical Phenomena

Mean field theory is a crude approximation, but it describes the physics of phase
transitions rather well, except near one special location on the phase diagram, the
critical point, sketched in Figure 24.10. What makes this point so critical? As
particularly emphasized by Fisher (1974) a comparison of phenomena applicable
to magnets and to fluids provides some explanation.

e The critical point is a unique location in the phase diagram. In a magnetic
system, the critical point occurs for zero external magnetic field and at the
critical temperature 7, which is the lowest temperature at which the spon-
taneous magnetization vanishes. In a fluid, for any given pressure there is a
temperature below which fluid and gas can coexist, and above which fluid and
gas merge into a single phase. The critical point occurs at the pressure for
which this critical temperature is as high as possible. In CO,, for example,
the critical point is at 72 atm and a temperature of 31.04°C.
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Figure 24.10. (A) Schematic phase diagram for a ferromagnet. The critical point lies at the
highest temperature where there is spontaneous magnetization in zero field. (B) Schematic
phase diagram of liquid—gas system. Beyond the critical point, fluid and gas phases merge
and cannot be distinguished as pressure varies. The two phases of the magnet are related
by symmetry, but this is not true in the liquid—gas system.

o The specific heat both of magnets and fluids diverges approaching the critical
point. The divergence takes the form of a power law.

e The magnetic susceptibility diverges in magnetic systems, and the compress-
ibility diverges in fluids. These divergences also take the forms of power laws.

e The divergences result from large fluctuations: large correlated domains of
spins flipping back and forth in magnets, and large regions altering between
one density and another in fluids. Fluids that normally are transparent become
milky, displaying critical opalescence.

Investigating these phenomena led to two important ideas:

Universality. Divergences near the critical point are identical in a variety of ap-
parently different physical systems and also in a collection of simple mod-
els. Systems group into a small number of universality classes. For example,
ferromagnetic salts, carbon dioxide, and the Ising model all behave identi-
cally near the critical point, and belong to the same class. However, two-
dimensional magnetic films are essentially different from three-dimensional
magnetic systems, and they belong to a different class.

Scaling. The key to understanding the critical point lies in understanding the rela-
tionship between systems of different sizes. Scaling functions, such as those
used to describe localization in Section 18.5.2, are the key to encoding the
universal features of the critical point. Formal development of this idea led to
the renormalization group of Wilson (1975).

24.6.1 Landau Free Energy

In order to see that mean field theory fails near the critical point, it is necessary
to analyze its predictions and compare them with experiment. This task could
be carried out by startiifg with Eq. (24.56). However, it is preferable to adopt a
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framework developed by Landau (1937) that exhibits clearly the minimal set of
assumptions needed to obtain the results of mean field theory.

Suppose that the free energy of a magnetic system is analytic in the vicinity of
the critical point, and that all physical tuantities can be expressed as a Taylor series
in the magnetization and temperature. This assumption seems reasonable, because
the magnetization vanishes right at the critical point, and one only needs to know
how the free energy depends upon it when it is small. So
T(M,T) = A0(T)+Ax(TIM+AUTIM'+-HM. e coupin bt e sl g,

Eg. (24.26).
(24.75)
The coefficients Ag(T') . . . A4(T) are undetermined functions of temperature. The
reason that only even terms in M appear is that the system must be invariant under
M — —M, H — —H; terms odd in M alone must vanish.

.’é Ay >0
g A =0
? A <0
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z
g 0l-—> — ’ —_ 4
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Figure 24.11. Form of Landau’s free energy, Eq. (24.75), for A» > 0, A; = 0. and 4> < 0.
Energies are measured relative to Ag.

Let T, be the critical temperature, and define the reduced temperature
T-T.
T. ’

which is a dimensionless variable designed to vanish right at the critical temper-
ature. Phase separation begins when F develops a concave structure. A4 must
always be positive or else F is minimized by sending M to infinity. A, sets the zero
of energy and has little significance. Therefore the onset of nonzero magnetization
is governed by A(T). As shown in Figure 24.11, the shape of F changes when
Aj passes through zero, so the critical point must be the place where A, vanishes.
Measure energies relative to Ao(7¢), and let a; and a4 be constants. The form of
the free energy in the vicinity of the critical point must be

F = aptM?* + ayM* + HM. (24.77)

(24.76)

Spontaneous Magnetization. The equilibrium magnetization is determined by
minimizing the free energy. Therefore, it must satisfy

H+2tayM +4asM3? = 0. (24.78)
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When H = 0, M = 0 always satisfies Eq. (24.78). However, for ¢ < 0 there are two
more solutions:

as ues of M give a lower value of the free en-
0 forr > (. ergy than M =0, and therefore correspond to
equilibrium.

[2|t|a
M= { + ‘—!'4‘|'—2 fort <O Figure 24.11 shows that for t < 0 these val- (24.79)

Specific Heat. With the behavior of M in hand it is possible to evaluate a collection
of other quantities. The specific heat is determined by the identity

o€ o 0 ﬂff For a derivation from thermodynamics, see for ex-
Cy=—=——— ample, Landau and Lifshitz (1980) pp. 47-48. The  (24.80)
oT oT 90p relation for € also is easily derived by writing out
the expression for € in the canonical ensemble.
19 , 0 ( F )
=—— —(141)2= ( —— ) UseEq.(24.76). 24.81
T, Ot ( ) ot \1+t¢ ( )
2
~— i 6—‘? Focusing on small 7. (24.82)
T, Ot 2
1 a%
={ T.2a4 fort <0 Insert Eq. (24.79) into Eq. (24.77). (24.83)
0 fort > 0.

Magnetic Susceptibility. Turning on an external field H changes the equilibrium
magnetization. For 7 < 0, take

2|t
M= ] t¢H, (24.84)
4a4

where g is to be determined. Placing Eq. (24.84) into Eq. (24.78) and expanding to
first order in H, one finds that

q= _i]t—l' (24.85)
Expanding similarly about M = 0 for r > 0 gives
L fort <0
‘Zi; ~!  Alila (24.86)
—i—m—z fort > 0.

Critical Isotherm. Finally, right on the critical isotherm at ¢ = 0, one has that
H+4asM> =0= M o H'/3. (24.87)

The suppositions of the Landau theory are entirely reasonable, yet experiments
prove them wrong. The assumption that fails is the assumption that the free energy
can be expanded in aylaylor series about the critical point.
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Correspondence between Liquids and Magnets. Experiments on critical point
phenomena have been conducted both in magnets, and in liquid—gas systems. The
two systems act almost identically in the vicinity of the critical point, once corre-
sponding variables have been identified.

A correspondence between magnetic and liquid—gas systems can be constructed
in a manner similar to that used for superlattices in Section 5.2.3. Imagine that the
material of type A in that section is a fluid, while the material of type B is gas.
Then the equations describing the superlattice can immediately be interpreted as
describing liquid—gas phase transitions. At temperatures below the transition, fluid
prefers to group with fluid and gas prefers to group with gas, meaning that the en-
ergy €4p is positive, and the fluid—gas system corresponds to a ferromagnet, with
positive J in Eq. (24.43). Above the transition temperature, fluid and gas mix to-
gether, forming a single homogeneous phase, while below the transition, gas and
liquid phase separate.

Based on this discussion, one forms the following correspondence: The mag-
netization M corresponds to the difference in particle density An between liquid
and gas. The thermodynamic variable conjugate to M is the magnetic field H, so
the variable conjugate to An, which is the chemical potential 1, must correspond
to magnetic field. The chemical potential is hard to measure directly. However,
according to the Gibbs—Duhem relation

dP = sdT +ndp, SeeLandauand Lifshitz (1980), p.72; s is the (24.88)
entropy per volume.
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Figure 24.12. Molar heat capacities of four ferromagnetic copper salts versus scaled tem-
perature T /T... [Source Jongh and Miedema (1974).]
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so that if temperature is fixed, pressure is proportional to chemical potential, and
pressure can therefore be used instead of chemical potential as the analog of mag-
netic field.

Six exponents are conventionally defined to characterize various quantities that
become singular near the critical point.

Specific Heat—c.. The specific heat both in fluids and in magnets diverges as
Cy(t) ~ |t (24.89)

data for magnets appear in Figure 24.12. Mean field theory predicts a discontinuity
in the specific heat, not a divergence.

Magnetization and Density—(3. Figure 24.13(A) displays experimental measure-
ments of temperature versus magnetization near the critical point. According to
Eq. (24.79), T should approach T, as M?. The data however show that T ap-
proaches T, as M>. Figure 24.13(B) shows that temperature versus density at con-
stant pressure for a collection of liquid—gas systems is characterized by the same
exponent. So

M~|]? and An~ [’ (24.90)

Letting n. be the density at the critical point, one can take An to be njiguiq — e,
N¢ — Ngas, OT Hliquid — Hgas-

Compressibility and Susceptibility—~. The isothermal compressibility of fluids
diverges near the critical point:

1 On 1 0An
Kr= o~ —
noP n. OP

~ 7. (24.91)

The analogous divergence for a magnet is

oM -

Mean field theory predicts ¥ = 1, but the measurements find a slightly larger expo-
nent.

Critical Isotherm—~¢. A next critical exponent occurs by making measurements
right at 7, on the critical isotherm

P~ |An|’, (24.93)

and for a magnet
|M| ~ |H|°. (24.94)

The mean field prediction is § = 3, but the measurements find § = 5.
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Figure 24.13. (A) Temperature versus magnetization, measured using nuclear magnetic
resonance by Heller and Benedek (1962) for the antiferromagnet MnF,, near the critical
temperature T = 67.336 K. The data are fit well by T/T, = 1 — A|M|>. (B) Coexistence
curve for eight fluids, measured by Guggenheim (1945). The data can be fit reasonably well
by curves of the form T/T. =1 — A*[n/n. — 1|?, where A= is a constant taking different
values depending on whether n is greater or less than n.. The best quadratic fit is also

shown, but it suits the data less well.

Correlation Length — v. A final pair of exponents relates to light scattering
experiments that probe the correlation function of fluids. According to Eq. (5.39)
the two-particle correlation function g is closely related to the scattering function

S. Near the critical point, g(r) is observed to behave as

g( r) —1~e " /€ There are power-law corrections given inEq. (24.99),  (24.95)
so exp[—r/€]/r1+T is more accurate.

where £(T) is called the correlation length. The implication for scattering experi-

ments is that

S@-1=n [ a7 A gl 1) (24.96)
N/ T (24.97)
1+&242
The correlation length ¢ diverges approaching the critical point, with
E~ ™ (24.98)

This divergence can be measured by plotting 1/S(q) versus g°

Power-Law Decay at Critical Point—r1. Right at the critical point, the correlation
function g decays as a power and not as an exponential. The rate at which it decays

1S
g(r) ~r 11, (24.99)
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Table 24.3. Summary of critical exponents, showing correspondence between
fluid-gas systems, magnetic systems, and the three-dimensional Ising model

Exponent Fluid Magnet Mean Field Theory Experiment 3d Ising
Q Cy~t|T® Cy~|t|T® discontinuity 0.11-0.12 0.110

B An~Jtff M~|t)? 3 0.35-0.37 0.325

¥ Kr~f|7" x~™ 1 121-135 1.241

§ P~|An®  |H|~ M’ 3 4046 482

v E~lt|™  E~7” 0.61-0.64 0.63

n gr)~r 7 g(r) ~ 77T 0.02-0.06 0.032

Source: Vicentini-Missoni (1972) p. 67, Cummins (1971), p. 417, and Goldenfeld
(1992) p. 384.

and this equation defines the exponent 7.

Table 24.3 presents a summary of the six exponents and gives their values in
mean field theory and experiment.

24.6.2 Scaling Theory

The Landau theory of phase transitions makes no assumption more severe than
that the free energy could be expanded as a Taylor series in the neighborhood of
the critical point. Because the Landau theory fails, this assumption must fail, and
the question is what should replace it.

A full theory of the critical point is extremely elaborate. The concept of univer-
sality makes it possible to construct a theory by focusing upon simple models, such
as the Ising model, whose critical behavior is identical to that of the experimental

_systems. Yet even for these model systems, the analysis is extremely involved. The
most accurate determination of critical behavior for the Ising models is given by
power-series expansions of the partition function, discussed by Domb (1974).

Rather than developing the theory, the discussion will focus upon developing
the language needed to describe experimental observations. The basic observation
is that near the critical point, physical quantities behave as power laws, that these
power laws are universal, but that the exponents are far from obvious. It has be-
come commonplace to claim that natural phenomena behave as power laws, but the
standard set in the field of critical phenomena, where precise power-law scaling is
observed over many decades, has rarely been matched. -

Widom (1965) showed that many experimental observations could be described
by assuming a particular type of scaling relation between thermodynamic variables.
The scaling theory can take a number of different forms, one of which is to make
an hypothesis about the manner in which variables appear within the free energy.

Consider-the power-law divergence of the specific heat, shown in Figure 24.12.
Because the specific heat is obtained from the free energy as in Eq. (24.80), the
free energy G(7', H) must have a singular piece. Separate the singularity out in the
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form

9
VksT

where the exponent x; has been chosen so that when H = 0, G is a smooth function
of t. At H = 0 the specific heat must diverge as || ™%, so one has that

Cv = ia‘;g,\,t_a

= (24.101)
v or 6ﬂ Notice that differentiating by T’ lowers the power

—_n_ of t, but multiplying by T does not raise the
> n=2-a power of ¢; it multiplies by the constant 7. (24. 102)

= |tf*G(t, H), (24.100)

Scaling Form for Free Energy. The main difficulty posed by a form such as
Eq. (24.101) lies in the experimental fact that when H # 0, there are no singular
quantities as ¢ passes through zero. The specific heat is only singular right at the
critical point. With a nonzero magnetic field, the specific heat displays a peak as
a function of temperature, but varies smoothly. Choosing a form for G in accord
with this experimental observation proceeds in two steps.

First, assume that the magnetic field and temperature enter G only in the com-
bination

H

G(t, H) =G (W

) . Hpis some constant, and A is some exponent. (24. 103)

One way to express the idea behind this functional form is to say that the impor-
tance of the magnetic field to the free energy can only be judged by comparing it to
some reference value, and it is supposed that this reference value scales as a power
law with the reduced temperature.

Second, assume that G itself behaves as a power when its argument becomes
extremely large:

lim G(y) ~ y™. (24.104)

y—o0

Making this assumption, one has for small |¢| but nonzero H that

9 2—a n 2—a—Ax
VkgT 4 (HoltlA) d ' (2410

Thus the free energy can be made nonsingular whenever H 5 0, provided that

2 -
Xp = Ta. (24.106)

The exponent A can be expressed entirely in terms of exponents that have
already been defined by examining the spontaneous magnetization. One has

09

1 H
2—a !
M= ~ =z . See Eq. (24.31).
OH I ‘ Ho'tIAG (Ho't'A) oo Ba € )

(24.107)
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When H — 0, the magnetization must vanish as |¢[%, so

Y {1 (24.108)
S A=2—a-8. (24.109)

Notice one peculiarity. Above the critical temperature, the spontaneous magnetiza-
tion must vanish, yet it is predicted to have the same power law divergence above
as below. These two facts are consistent if one observes that the coefficients of
the power-law can be different above and below T¢: the coefficient above T is just
Zero.

Relations Among Exponents. Having determined the singular parts of the free
energy in terms of the exponents « and f§, it is possible to continue calculating
the various singular quantities that are found experimentally. All the remaining
singularities can now be related to the ones that have already been found.

For example, the magnetic susceptibility is

oM = e H
— =y~ 24.110
OH |H=0 X H3|r|2A (Ho|t|A )lH=0 ( )
= [¢[272728 ~ |17 (24.111)
= y=a+2A-2. (24.112)
Combining Eq. (24.112) with Eq. (24.109) gives
2=a+28+7. (24.113)

This relation among exponents, the Widom relation, is a consequence of the scaling
assumption, and it is obeyed in all known cases.

The exponent § describes the relation of the magnetization to the magnetic field
on the critical isotherm. Asz — 0,

Mo~ — e ( i )xz_l (24.114)
Holt|2 Ho|r|2 '

~ H2~l — g2—a—A)/A (24.115)

N % _ i___a_::l (24.116)

=6=1+ %, Use Eq. (24.113). . (24.117)

which is the Rushbrooke relation.

The final exponents, v and 7, relate to properties of the correlation function
g(r), so the connection between the correlation function and the free energy needs
to be determined. The relation is provided by observing that fluctuations in particle
number are related to the compressibility K7 through

2
< AN2> = kB\T;V g_\; = kpTn*VKy SeeLandau and Lifshitz (1980), p. 342. (24.118)
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= / did? (n(@n()) | - (N)? (24.119)
. Follmss stcpg similar to those
=Vn {1 +n / dr(g(r) — 1)} . ag;ll(ns-sl‘é?-fgr-;l), and use (24.120)

Because near the critical point

e~"/¢
8(r) ~ —y (24.121)
one has
Kr~ / a7 g(r). (24.122)

Changing variables to 5= 7/£ and using Eq. (24.121), one obtains

—s
o £3g—1-m - €
Kr ~&7¢ / dss1 v (24.123)
~ E27T s [ V), (24.124)
However, the compressibility must diverge as |¢| 77, so
2-nv=1, (24.125)

the Fisher-Essam relation. Finally, there is an apparently improbable argument
that because G = G/kgT'V has dimensions of inverse length to the third power, but
the only length in the system that should be important near the critical point is the
correlation length £, one must have that

9 _ _
i e~ e (24-120)

=2 —a =73y, (24.127)

the Josephson or hyperscaling relation. All of these scaling relations are obeyed
within a few percent by the experimental values listed in Table 24.3.

Scaling Form for Magnetization. Some of the most detailed experimental results
are expressed using an alternate form of the scaling hypothesis, one that relates the
magnetic field and magnetization through

|H| = MR (lMltW) . (24.128)

The function 4 can be measured by choosing temperature 7" and field H, measuring
M, and then constructing the ratio |H|/|M|° and plotting it versus the variable

t

When the external magnetic field H vanishes, k(x) must vanish. Because |[M| ~ t?
for H =0, the conclusion is that in vanishing field x = /|M|'/# = —xg is a constant,
and h(—xp) =0.
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Figure 24.14. Log-log plot of scaling function & = |H|/|M|® versus x =t /|M|"/#, using
0 =4.32, = 0.364, and xg = 0.596 for CrBr;. The exponents and the critical temperature
T; = 32.841 K are determined together as part of the process of trying to ensure that data
taken at different temperatures lie on top of a single scaling curve. [Source: Vicentini-
Missoni (1972), p. 68.]

If the scaling hypothesis is correct, then measurements of |H|/|M|? versus x +
xo should fall on a single line. As shown in Figure 24.14, the data do collapse in
this way, and furthermore the function  takes the form of a power law over a large
range of temperature near the critical point.

Problems

L.

2.

Magnetic dipole moment: Consider a small loop of wire in the x—y plane
with area A, and current J flowing through it. Show that the vector potential
A far from the loop is given by

mx7F

A= (24.130)

P

where 7is a vector from the middle of the loop of wire to an observation point.

Magnetic dipole energies: Verify Egs. (24.36) and (24.37):

(a) Consider a distribution of current j(7) that is localized and is in steady state,

which means that V- j = 0. By considering

/d? rargV-j=0, (24.131)



