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The electron—electron interaction V is diagonal in the coordinate representation and
has the form

eZ
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We choose the coordinate representation with spin as the basis | a) and | 8), and we
denote the Hartree-Fock eigenfunctions as

(ro|m) = ¢,(ro)
With this notation, the Hartree-Fock equations (22.36) are transcribed as
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These coupled nonlinear differential-integral equations constitute the most familiar -
realization of the Hartree-Fock theory. The first sum on the left-hand side (without
the term ¢ = m if m is an occupied state) represents the average effect of the inter-
action between all the other electrons in occupied one-particle states. The last sum
on the left-hand side is attributable to the exchange matrix elements of the interac-
tion.

Exercise 22.10. Show that the configuration space wave function correspond-
ing to the independent particle state (22.22) can be expressed as the Slater deter-
minant
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5. Quantum Statistics and Thermodynamics. The many-body operator formal-
ism of Chapter 21 is ideally suited for treating statistical ensembles of identical
particles. Here we will derive the quantum distribution functions for a system of
noninteracting particles in thermal equilibrium.

If p denotes the density (or statistical) operator for an ensemble with fixed
values for the averages of ¥ and N, statistical thermodynamics requires that the von
Neumann entropy,

S = —k trace(p In p) (22.39)
be made a maximum subject to the constraints
(N) = trace(pN) = n, (#) = trace(p¥) = E, trace(p) = 1  (22.40)

The entropy principle is based on the probability and information concepts intro-
duced in Section 2 in the Appendix and Section 15.5. Except for the multiplication
by Boltzmann’s constant k, the entropy S is that defined in Eq. (15.128).
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Using the Lagrangian multipliers « and 8, we see that the variational principle
takes the form

8(S — ka(N) — k(%)) = 0 (22.41)

The normalization constraint in (22.40) requires that the variations of the density
operator be restricted to

. trace(dp) = 0 (22.42)
and, therefore,
8S = —k trace(8p In p + 8p) = —k trace(Sp In p)
Substituting all the variations into (22.41), we obtain
‘ trace[8p(ln p + aN + BH)] = 0
which is consistent with (22.42) only if
Inp+aN+ BH =-InZ1

where Z is a number. We thus arrive at the grand canonical form of the density
operator:

e~ aN—pB¥%
= 2243
p Z (22.43)
The normalization condition gives us
| Z = trace ¢ *N7F% | (22.44)

which is called the grand partition function. The parameters « and 8 must be de-
termined from the first two constraint conditions (22.40). By thermodynamic argu-
ments, 8 = 1/kT is a measure of the temperature and . = —a/f is identified as the
chemical potential.

Exercise 22.11. Evaluate the entropy for the equilibrium state (22.43), and
show that
~kTlnZ=(H) — w(N) —TS=E— TS — un (22.45)
which is the grand canonical potential (or generalized free energy), suitable for
relating thermodynamic variables to the underlying microscopic description.®
For a system of noninteracting identical particles with one-particle energies &;,
known in thermodynamics as a generalized ideal gas,
® = gala;, = &N, (22.46)
The ensemble average of any physical quantity represented by an operator Q

may be computed by application of the formula

(Q) = trace pQ (22.47)

SCallen (1985), Section 5.3, and Reif (1965), Section 6.6.
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We apply this relation to the evaluation of the average occupation numbers N;:

(N;) = (ala;) = trace(e™*""**ala)/Z (22.48)
Using Eqgs. (21.31)—(21.33) and the identity (3.59), we find that
trace(e N P¥%alq) = e~ @PD trace(e” V" P*g,a}) (22.49)

Exercise 22.12. Verify Eq. (22.49).

If the commutation relations for bosons or anticomutation relations for fermions
are used, we obtain (with the upper sign for bosons and the lower sign for fermions)
trace(e~ ¥ P%gla;) = e @tPe) race[e ™ PH(1 % ala)]

Combining this relation with (22.43), we obtain

1

(N} = (ala) = —go—7 (22.50)

which is the familiar formula for the distribution of particles with Bose-Einstein
(— sign) and Fermi-Dirac (+ sign) statistics, respectively.

The connection with the more conventional method for deriving the distribution
(22.50) is established by introducing the occupation numbers n; as the eigenvalues |,

of N; = afa; and the corresponding eigenstates |n1, n,, ... N, ...) as basis states of
the ideal gas. In this representation, the grand partition function becomes
z= > [le@rpem (22:51)
Ry, i
The distribution (22 50) is recovered by computing
19lnZ
N;) = —— 22.52
M) = =55 @252

which follows from (22.44) and (22.48). The two kinds of quantum statistics are
distinguished and their partition functions are different, because in the Bose-Einstein
case the occupation numbers assume all nonnegative integers as eigenvalues,
whereas for the Fermi-Dirac case, n; = 0, 1 are the only possible values.

The derivation of {N;), using operators rather than the occupation-number basis,
is intended to exhibit as plainly as possible the connection between the commutation
relations for bosons and the anticommutation relations for fermions and the — and
+ signs, respectively, which characterize the denominator of the two distribution
laws.

The Maxwell-Boltzmann distribution,

(N;> = g @ =lkT (22.53)

is an approximation for the quantum distributions (22.50), valid if (N;) << 1. This
may be regarded as a low-density or high-temperature approximation.

Exercise 22.13. Using operator algebra, show that the square of the fractional
deviation from the mean occupation number is
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where the + sign pertains to Bose-Einstein statistics and the — sign to Fermi-Dirac
statistics. Also consider the Maxwell-Boltzmann limit.

In the next chapter, the formalism developed here will be applied to the deri-

vation of the Planck distribution for photons in thermal equilibrium.

Problems

1.

Consider a system of identical bosons with only two one-particle basis states,
ai, ¥ and a',,¥®. Define the Hermitian operators x, p, y, p, by the relations

a - L ox + i a =-—l-c+i&
172 m ) —-1/2 N2 y c

where ¢ is an arbitrary real constant, and derive the commutation relations for these
Hermitian operators. Express the angular momentum operator (22.6) in terms of these
‘“‘coordinates’’ and ‘‘momenta,”’ and also evaluate $2. Relate $* to the square of the
Hamiltonian of an isotropic two-dimensional harmonic oscillator by making the iden-
tification ¢ = Vmw, and show the connection between the eigenvalues of these op-
erators.

(2) Using the fermion creation operators aj,, appropriate to particles with angular
momentum j, form the closed-shell state in which all one-particle states m = —j to
+j are occupied.

(b) Prove that the closed shell has zero total angular momentum.

(c) If a fermion with magnetic quantum number m is missing from a closed shell
of particles with angular momentum j, show that, for coupling angular momenta, the
hole state may be treated like a one-particle state with magnetic quantum number —m
and an effective creation operator (—1)Y ™ "a;,,.

T

. Consider the unperturbed states a,, - - aln, - - - ain,|0) of n spin one-half particles,

each occupying one of n equivalent, degenerate orthogonal orbitals labeled by the
quantum number k&, and with m; = *1/2 denoting the spin quantum number associated
with the orbital k. Show that in the space of the 2" unperturbed states a spin-inde-
pendent two-body interaction may, in first-order perturbation theory, be replaced by
the effective exchange (or Heisenberg) Hamiltonian

1
Ko = ~3 > (k€| V|€k)S, - S, + const.
ke
where S, is the localized spin operator

#
Sk =E 2 aankakrn'k(mkI“ |mI’c)
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For a Fermi gas of free particles with Fermi momentum pz, calculate the ground state
expectation value of the pair density operator
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in coordinate space and show that there is a repulsive interaction that would be absent
if the particles were not identical. Show that there is no spatial correlation between
particles of opposite spin.



